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Radiation Effects in Space

 Radiation Is a Discriminating Environment for JPL Missions

 Dealing with Potential Radiation Problems Is Critical for Mission
Success

– Complex problem, made worse by evolving technology
– Past mission performance illustrates how JPL can be successful in space
– Learning from previous mistakes and oversights is also important

 This Course Is Intended to Increase Awareness of Radiation Issues
– Attended by designers and spacecraft operational personnel

– Limited in scope
• Not intended to make everyone an expert

• Provides basic information and points of contact
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Examples of Radiation Problems in Spacecraft

 Special Redesign of 2901 Microprocessor for Galileo
– Problem identified during design and evaluation
– Potential “show stopper” for Galileo mission

 Resets in Hubble Space Telescope after Upgrade in 1996
– Caused by transients from optocouplers
– Occurred when spacecraft flew through South Atlantic anomaly

 Failures of Optocouplers on Topex-Poseidon

 Resets in Power Control Modules on Cassini

 High Multiple-Bit Error Rate in Cassini Solid-State Recorder



4

Available Resources at JPL

 Laboratory Facilities and Test Technology
– Cobalt-60 test cell
– Frequent off-site tests at accelerators

 Experienced, Knowledgeable Personnel
– Aware of project needs
– Continual evaluation and modeling of new technologies

 RADATA Data Base

 Reports and Technical Papers
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Key Contacts for Radiation Effects Issues

 Allan Johnston, Acting Group Supervisor
 Leif Scheick
 Gary Swift
 John Conley
 - - - - - - - - - - -
 Steve McClure
 Larry Edmonds
 Sumit Shah (RADATA data base)
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Course Outline

 Introduction

 Overview of Radiation Environments

 Recoverable Single-Event Upset Effects

 Non-Recoverable Single-Event Upset Effect

 Total Dose Effects

 Displacement Damage and Special Issues for Optoelectronics

 Summary
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Section II:  Overview of Radiation Environments

Allan H. Johnston
Electronic Parts Engineering Office

Section 514
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Radiation Environments

 Energetic Particles Causing Single-Event Upset
– Galactic cosmic rays
– Cosmic solar particles (heavily influenced by solar flares)
– Trapped protons in radiation belts

 Radiation Causing “Global” Radiation Damage
– Trapped protons in radiation belts
– Trapped electrons in radiation belts
– Protons from solar flares
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Trapped Radiation Belts around Earth
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Energy Distribution in the Earth’s Proton Belt

Altitude at the Equator (thousands of km)
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Trapped Belt Energy Distributions on Jupiter and Earth
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Space Systems at JPL

 Interplanetary Missions
– Jupiter and Saturn

• Intense radiation belts
• Very high radiation levels [> 1 Mrad(Si)]

– Mars Missions
• Orbiters
• Landers

– Asteroids, Comets and Solar Probes

 Earth Orbiting Missions
– Typical radiation levels < 20 krad(Si)

• Depends on altitude and inclination
• Affected by south Atlantic anomaly

– Less margin between specified radiation environment and reality
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Solar Flares

 Solar Cycle Has Eleven-Year Periodicity

 Solar Flares Produce Heavy Ions and Protons
– Heavy ion spectrum is less energetic than galactic cosmic ray

spectrum
– Protons from solar flares are important for earth orbiting and deep

space programs
• Protons from a single flare produce fluences up to ~ 2 x 1010 p/cm2

• Shielding can be effective for lower energies

 Solar Flare Intensity Varies Over a Wide Range
– JPL “design-case” flare usually used for specifications
– Many systems never experience a large flare



14

Mechanisms for Global Permanent Damage

 Electrons and Protons Produce Ionization in Semiconductors
– Ionization excites carriers from conduction to valence band
– Charge is trapped at interface regions
– Units:  rad(material)        1 rad = 100 ergs/g of material
– Depends on bias conditions and device technology
– Typical effect:  threshold shift in MOS transistors

 Displacement Damage Also Occurs
– “Collision” between incoming particle and lattice atom
– Lattice atom is moved out of normal position
– Degrades minority carrier lifetime
– Typical effect:  degradation of gain and leakage current in bipolar

transistors
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Mechanisms for Heavy Ion and Proton SEU Effects
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Linear Energy Transfer for Heavy Ions

Integral Cosmic Ray Spectra
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SEE Sensitivity Benchmarks

 Heavy Ion Susceptibility
– Spectrum falls sharply above 30 MeV-cm2/mg
– Effective threshold for concern is much higher, 75 MeV-cm2/mg

• Charge produced by ions depends on total path length
• Increases as 1/(cos θ )

 Proton Susceptibility
– Proton upset is possible for devices with LETth < 15 MeV-cm2/mg

– Proton testing should be done for all devices with thresholds below
that level
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CMOS Technology
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Bulk and Epitaxial Substrates
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Bipolar Technology
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